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Magnetic resonance imaging texture predicts 
progression to dementia due to Alzheimer disease 

earlier than hippocampal volume
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Introduction

The identification of people at risk for dementia due to Al-
zheimer disease is crucial for timely intervention and effec-
tive treatment. While amyloid and tau are sensitive markers 
of the disease, about 30%–50% of amyloid-positive elderly  
individuals are known to remain clinically normal, suggest-
ing that the presence of these markers is not enough to cause 
dementia.1 Furthermore, such molecular changes are not 
markers of imminent conversion, because they accumulate as 
early as 2 decades before overt clinical onset and start to pla-
teau during the stage of mild cognitive impairment (MCI).2 In 
contrast, structural brain changes are temporally closer to 
clinical manifestation and are a more direct cause of clinical 
symptoms. Therefore, structural MRI can provide evidence 
about the stage or severity of disease that may not be pro-

vided by amyloid measures3 and thus can be a more robust 
marker of imminent progression from MCI to dementia.

Hippocampal atrophy is currently the most widely applied 
structural MRI biomarker for the diagnosis of Alzheimer dis-
ease.4 However, atrophy may not be detected early enough to 
predict Alzheimer disease, because it occurs relatively down-
stream of the disease.2 Furthermore, volumetric information 
may not fully capture the neurodegenerative process in 
Alzheimer disease, which can involve changes at the micro-
scopic level (i.e., amyloid deposition, chronic inflammation or 
spongiform changes) that may alter tissue characteristics 
without necessarily causing atrophy.5 On the other hand, T1 
relaxation time from MRI is a direct reflection of such tissue 
characteristics and can independently predict histological 
measures of neuronal density.6,7 Such variations in relaxation 
time, which directly cause variations in MRI signal intensity, 

Correspondence to: K.W. Kim, Department of Neuropsychiatry, Seoul National University Bundang Hospital, 82 Gumi-ro 173 beon-gil, 
Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea; kwkimmd@snu.ac.kr

Submitted Sep. 23, 2018; Revised Dec. 17, 2018; Revised Jan. 25, 2019; Revised Mar. 5, 2019; Accepted Mar. 8, 2019; Published online 
June 21, 2019

DOI: 10.1503/jpn.180171

Background: Early identification of people at risk of imminent progression to dementia due to Alzheimer disease is crucial for timely inter-
vention and treatment. We investigated whether the texture of MRI brain scans could predict the progression of mild cognitive impairment 
(MCI) to Alzheimer disease earlier than volume. Methods: We constructed a development data set (121 people who were cognitively nor-
mal and 145 who had mild Alzheimer disease) and a validation data set (113 patients with stable MCI who did not progress to Alzheimer 
disease for 3 years; 40 with early MCI who progressed to Alzheimer disease after 12–36 months; and 41 with late MCI who progressed to 
Alzheimer disease within 12 months) from the Alzheimer’s Disease Neuroimaging Initiative. We analyzed the texture of the hippocampus, 
precuneus and posterior cingulate cortex using a grey-level co-occurrence matrix. We constructed texture and volume indices from the 
development data set using logistic regression. Using area under the curve (AUC) of receiver operator characteristics, we compared the 
accuracy of hippocampal volume, hippocampal texture and the composite texture of the hippocampus, precuneus and posterior cingulate 
cortex in predicting conversion from MCI to Alzheimer disease in the validation data set. Results: Compared with hippocampal volume, 
hippocampal texture (0.790 v. 0.739, p = 0.047) and composite texture (0.811 v. 0.739, p = 0.007) showed larger AUCs for conversion to 
Alzheimer disease from both early and late MCI. Hippocampal texture showed a marginally larger AUC than hippocampal volume in early 
MCI (0.795 v. 0.726, p = 0.060). Composite texture showed a larger AUC for conversion to Alzheimer disease than hippocampal volume 
in both early (0.817 v. 0.726, p = 0.027) and late MCI (0.805 v. 0.753, p = 0.019). Limitations: This study was limited by the absence 
of histological data, and the pathology reflected by the texture measures remains to be validated. Conclusion: Textures of the hippocam-
pus, precuneus and posterior cingulate cortex predicted conversion from MCI to Alzheimer disease at an earlier time point and with higher 
accuracy than hippocampal volume.
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can harbour information beyond that provided by volumetric 
measures. A previous human study showed that age-dependent 
changes in the signal intensity of T1-weighted images occur 
independently of concurrent changes in cortical thickness,8 
and a study in mice showed that changes in MRI signal inten-
sity associated with dendritic changes in the amygdala follow-
ing fear conditioning occurred in the absence of any volumet-
ric changes.9 These findings point to the possible use of MRI 
signal intensity as a measure of neurodegeneration that may 
contain unique information about changes at the microscopic 
level that can occur before or concurrently with changes at 
the macroscopic level, such as atrophy, but independently of 
such changes.

Texture analysis is a quantitative measure of spatial pat-
terns of local changes in signal intensity, and it can be used to 
detect subtle alterations in signal intensity.10 Texture is widely 
applied in medical image analysis, such as classification of 
multiple sclerosis11 and grading of brain tumours.12,13 Many 
studies have also applied texture to the classification of 
Alzheimer disease,14–23 under the working hypothesis that 
accumulated neuropathology in Alzheimer disease will be 
reflected as signal intensity changes associated with neuronal 
damage in brain tissue. Of these, 2 studies also applied tex-
ture to predicting progression from MCI to Alzheimer dis-
ease,14,20 suggesting that textural changes in early stages may 
be a valuable predictive marker of imminent progression.

However, several issues remain to be addressed. First, the 
theoretical value of texture lies in being able to detect changes 
earlier than with volume, but only 1 study has compared the 
predictive performance of texture and volume.20 Furthermore, 
that study looked at the predictive performance of texture in a 
heterogeneous group of patients with MCI with mixed time to 
progression. To determine the clinical value of texture, its pre-
dictive power in the early and late stages of MCI should be in-
vestigated separately. As well, to use texture to detect early 
changes, brain regions that show pathological changes earlier 
than the hippocampus or the temporal cortices (to which all 
previous studies have been limited) should be investigated. The 
precuneus and posterior cingulate cortex (PCC) undergo earlier 
neuropathological alterations24 than the hippocampus, and add-
ing texture from these regions may add early predictive value.

The objective of this study was to determine whether textural 
measures in different stages of MCI can be a valuable predic-
tive marker of imminent progression to Alzheimer disease. We 
investigated the predictive value of texture in the early predic-
tion of Alzheimer disease progression compared with MRI hip-
pocampal volume and in patients with early- and late-stage 
MCI separately. Specifically, we compared the performance of 
hippocampal volume, hippocampal texture and a combination 
of texture from the hippocampus, precuneus and PCC.

Methods

Study participants

We obtained MRI scans to construct a development data set 
and a validation data set from the Alzheimer’s Disease Neuro
imaging Initiative 2 (ADNI2) database (adni.loni.usc.edu). 

For up-to-date information, see www.adni-info.org. The 
Alzheimer’s Disease Neuroimaging Initiative was approved 
by the institutional review board at each site, and all partici-
pants gave their written consent.

We used the development data set to develop indices of 
hippocampal volume and hippocampal texture, and a com-
posite texture of hippocampus, precuneus and PCC to differ-
entiate between Alzheimer disease and cognitively normal 
(CN) states. The development data set was constructed from 
the baseline or screening 3 T T1-weighted MRI scans of 
145 patients with mild Alzheimer disease and 121 CN con-
trols who participated in ADNI2 and completed follow-up 
evaluations for 2 years or longer. We included only patients 
with mild Alzheimer disease whose baseline total Clinical 
Dementia Rating was 0.5 or 1 and CN controls who main-
tained a CN diagnosis and a Clinical Dementia Rating sum of 
boxes score of 0 from baseline to at least 2 years of follow-up.

We used the validation data set to test the predictive 
validity of conversion from MCI to Alzheimer disease for the 
indices from the development data set. We constructed the 
validation data set using the baseline 3 T T1-weighted MRI 
scans of 194 patients with amnestic MCI who participated in 
ADNI2. Of those patients, 113 did not progress to Alzheimer 
disease for at least 3 years after baseline assessment (stable 
MCI, MCI-S), and 81 progressed to Alzheimer disease within 
3 years (progressive MCI, MCI-P). In the MCI-P group, 
40 progressed to Alzheimer disease 12–36 months after base-
line evaluation (early MCI-P, MCI-PE) and 41 progressed to 
Alzheimer disease within 12 months of the baseline evalua-
tion (late MCI-P, MCI-PL). We assumed that the longer time 
for conversion from MCI to Alzheimer disease indicated 
earlier stages of the disease. 

MRI analysis

We used scanner-specific, optimally preprocessed 3 T T1-
weighted MRI scans (e.g., gradient nonlinearity correction, B1 
nonuniformity correction, histogram peak sharpening) 
downloaded from the ADNI2 database (details can be found 
at adni.loni.usc.edu). We resliced the original images to iso-
voxels (1 × 1 × 1 mm3) and used FreeSurfer 5.3.0 (surfer.nmr.
mgh.harvard.edu) to obtain participant-specific masks of 
brain regions as defined by the Desikan–Killiany atlas.25 
Briefly, this procedure involved motion correction of the T1-
weighted images, removal of nonbrain tissue,26 automated 
Talairach transformation, segmentation of subcortical white 
matter and deep grey matter structures,27,28 intensity normal-
ization,29 tessellation of the grey matter/white matter bound-
ary, automated topology correction30,31 and surface deforma-
tion following intensity gradients.32–34 Once the cortical 
models were complete, they were registered to a spherical 
atlas,35 and the cerebral cortex parcellated into units with re-
spect to gyral and sulcal structure.25,36 We mapped the brain 
parcellation mask for each participant from FreeSurfer space 
to the isovoxel native space and extracted 3 region-of-interest 
(ROI) masks (bilateral grey matter of the precuneus, PCC and 
hippocampus). The ROI masks were the results of collapsing 
the left- and right-hemisphere masks into a single bilateral 
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mask. We visually checked for segmentation or registration 
errors by overlaying each participant’s native-space-
transformed ROI masks onto their T1-weighted image.

To obtain bilateral volumes for the 3 ROIs, we summed the 
volumes of the left- and right-hemisphere ROIs returned by 
FreeSurfer.

To obtain texture measures of the brain regions, we con-
ducted 3D grey-level co-occurrence matrix (GLCM) texture 
analysis37 in each ROI. Briefly, the GLCM is an N × N matrix 
where N is the total number of grey levels in the image and 
where each element of the matrix records the frequency of a 
certain voxel pairing (composed of a reference voxel with 
value i and a neighbouring voxel with value j, defined based 
on various offset distances d and directions θ) occurring in the 
image. This GLCM contains composite information about the 
spatial distributions of specific pairs of grey-level voxels and 
is used as an input to calculate various texture features37–43 
that quantitatively represent different aspects of the homo
geneity and heterogeneity of the grey-level image (described 
in Appendix 1, Table S1, available at jpn.ca/180171​-a1). We 
chose the GLCM method not only because of its predominant 
use in previous Alzheimer disease literature on texture, but 
also for its relative ease of interpretation compared with other 
texture methods and its reliance on the relative rather than 
absolute value of the voxels in an image (second-order v. first-
order texture), which would make it less susceptible to inter-
scan variability in signal-intensity values. 

To conduct 3D GLCM analysis, we first applied the follow-
ing preprocessing steps. We extracted ROI images with the 
original signal intensity values from each participant’s T1-
weighted image and normalized the signal intensity in each 
ROI image by applying the ± 3σ normalization method. This 
method, which is the recommended normalization procedure 
for texture analysis, removes any voxels with intensity values 
beyond the μ ± 3σ range,44 thereby guarding against meas
urement error due to partial volume effects. Because texture 
analysis is generally assumed to be conducted over a homo-
geneous area (i.e., grey matter only), applying this method 
allowed us to exclude any voxels affected from neighbouring 
cerebrospinal fluid or white matter. We then performed quan-
tization by rescaling all grey-level values in each histogram-
normalized ROI image to a uniform range of 64. In GLCM 
analysis, grey levels are typically scaled down to 32 or 64 
instead of using the original grey levels (in the thousands), to 
avoid too many zero-valued entries, which can prevent sta-
tistical problems from sparse matrices.45 We found 64 to be 
an appropriate quantization level, because the histogram-
normalized ROIs typically had tens to hundreds of grey lev-
els (e.g., the precuneus had 67–1468 grey levels). Next, in 
each ROI, we computed 3D GLCMs for voxel pairs of within 
d = 1 of each other in 13 possible directions.46 In this manner, 
we could consider the spatial relations of voxels not only 
from the same slice, but also from adjacent slices. We then 
calculated 21 texture features for each of the 13 GLCMs and 
averaged them. These averaged texture features were 
obtained from each of the ROIs, yielding 63 texture features 
in total (21 features per region × 3 regions). Texture analyses 
were performed in subject space and did not involve spatial 

normalization to avoid introducing artifacts or distorting 
original signal intensities.

Statistical analysis

We compared continuous variables using independent-
sample t tests or 1-way analyses of variance, and categorical 
variables using χ2 tests. We considered a 2-sided p < 0.05 to 
be statistically significant.

We derived model parameters for hippocampal volume, 
hippocampal texture and composite texture that discrimi-
nated between Alzheimer disease and CN status in the devel-
opment data set using logistic regression. For the hippocam-
pal volume index, we entered hippocampal volume, age and 
sex as independent variables. While the main objective of our 
study was to compare texture with hippocampal volume (the 
current structural MRI measure in Alzheimer disease diag-
nostic criteria), we also created a composite volume index 
with the volumes of the 3 ROIs, age and sex.

For the hippocampal and composite texture indices, we 
found that many texture features were intercorrelated (vari-
ance inflation factor > 20), unlike in the volume models (vari-
ation inflation factor < 2). This multicollinearity can result in 
unstable model parameters, as well as overfitting. Thus, we 
used an additional regularization step in the logistic regres-
sion using the glmnet library (stanford.edu/~hastie/glmnet_
matlab/) on Matlab.47 Glmnet regularizes the size of the coef-
ficients by applying a mixture of 2 different regularization 
methods — ridge regression and least absolute shrinkage and 
selection operator (LASSO) — and has been used success-
fully in other Alzheimer disease classification studies involv-
ing high-dimensional MRI data.48–50 The regularized logistic 
regression (RLR)51,52 procedure involves first optimizing the 
2 hyperparameters λ and α: λ controls the amount of coeffi-
cient regularization, and α (0 to 1) controls the weight given 
to ridge regression (α= 0) and LASSO (α = 1). Ridge regres-
sion handles multicollinearity by shrinking all coefficients 
smoothly toward 0 but retains all variables in the model, 
while LASSO performs both coefficient shrinking and feature 
selection to offer a model that is simple but that can be un
stable in the presence of multicollinearity. Glmnet uses an 
elastic net approach to optimally combine the 2 regulariza-
tion methods to yield more stable and accurate estimates 
than with either alone, while maintaining model parsi-
mony.52 Hyperparameter optimization is performed by 
repetitively conducting 10-fold cross-validation on the devel-
opment data set, with various hyperparameter values. 
Briefly, the development data set is divided into 10 randomly 
formed subgroups with 1 assigned as a test set and the re-
maining 9 as the training set. A model derived from the train-
ing set is applied to the test set, and this process is repeated 
10 times, each time using a different subgroup as the test set. 
The mean performance across the 10 test sets, which is the 
mean cross-validated accuracy (measured via area under the 
curve [AUC]), is calculated for each combination of 
hyperparameters λ and α. The hyperparameter values that 
return the highest mean cross-validated accuracy are then 
used as inputs to an RLR analysis of the whole development 
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data set, along with the texture features of age and sex. From 
here, we obtained a set of model parameters for hippocampal 
or composite textures.

We then applied the model parameters for texture and vol-
ume from the development data set to the validation data set 
to yield logit scores for each individual: hippocampal volume 
index (HVI), hippocampal texture index (HTI), composite tex-
ture index (CTI) and composite volume index (CVI). The com-
posite indices included measures from all 3 ROIs (precuneus, 
PCC, hippocampus). We used AUC from receiver operator 
characteristics analyses to evaluate the accuracy of conversion 
from MCI to Alzheimer disease, and used DeLong tests53 to 
compare the AUCs among the HVI, HTI and CTI for predict-
ing conversion from MCI to Alzheimer disease.

Results

The demographic and clinical characteristics of the partici-
pants are summarized in Table 1. 

The model parameters for HVI, HTI and CTI obtained 
from the development data set are summarized in Table 2. 
Hyperparameter optimization in both the hippocampal tex-
ture model and composite texture model revealed that giv-
ing equal weight (α = 0.5) to both the LASSO and ridge 
regression methods gave the highest cross-validated AUC 
(result of 10-fold cross validation) for discriminating Al-
zheimer disease from CN status (AUC = 0.920 to 0.936). 
Thus, the estimated model parameters for both texture mod-
els reflected a mix of balance between selection of the most 
relevant features and model stability. The final parameters 
of the texture models included the intercept and non-zero 
coefficients. The hippocampal texture model included 15 of 
21 features, and the composite texture model included 27 of 
63 features. Cluster shade, maximum probability, sum aver-
age and information measures of correlation I were com-
monly chosen in all 3 regions. Of note is that glmnet returns 
coefficients in the original scale of the features, meaning that 
because of the various value ranges of each feature, the coef-
ficients in Table 2 can seem fluctuous. Features with very 
small coefficients such as cluster shade have very high abso-

lute values, ranging in the thousands, whereas features with 
large coefficients such as energy have very low subdecimal 
values. However, during actual calculation, the features 
were automatically standardized before being fitted to the 
RLR model.

Texture and volume for predicting progression to  
Alzheimer disease

The results for texture and volume in the validation data set 
are shown in Figure 1. In discriminating MCI-S from MCI-P, 
MCI-PE and MCI-PL, the performance of CTI did not signifi-
cantly increase from that of HTI (p = 0.177, 0.272 and 0.338, 
respectively). However, both HTI (AUC = 0.790) and CTI 
(AUC = 0.811) discriminated MCI-P from MCI-S better than 
HVI (AUC = 0.739, p = 0.047 for HTI and p = 0.007 for CTI). 
Furthermore, HTI was able to predict Alzheimer disease con-
version marginally better than HVI in early MCI (AUC = 
0.795 v. 0.726, p = 0.06), but not in late MCI (AUC = 0.785 v. 
0.753, p = 0.249). In the case of CTI, it predicted better than 
HVI in both early (AUC = 0.817 v. 0.726, p = 0.029) and late  
MCI (AUC = 0.805 v. 0.753, p = 0.019).

Our main analyses compared texture to HVI, but we also 
conducted comparison analyses with CVI (not shown). In 
discriminating MCI-S from MCI-P and MCI-PE, CVI showed 
a nonsignificant increase in sensitivity compared with HVI 
(p = 0.136 and 0.589, respectively). As well, CTI remained 
more accurate than CVI for MCI-S versus MCI-P (AUC = 
0.811 v. 0.769, p = 0.06) and MCI-S versus MCI-PE (AUC = 
0.817 v. 0.741, p = 0.027). However, for MCI-S versus MCI-PL, 
CVI showed a significant increase (p = 0.044) compared to 
HVI and reached performance similar to that of CTI (AUC = 
0.805 v. 0.797, p = 0.709).

We also investigated the possible impact of regularization 
on the performance of CTI and HTI over HVI. Using forward 
stepwise logistic regression (no regularization) for texture 
resulted in an HTI model with 5 features and a CTI model 
with 7 features (not shown), similar to the number of features 
for HVI (1 feature) and CVI (3 features). The nonregularized 
HTI and CTI remained more accurate than HVI for MCI-S 

Table 1: Baseline characteristics of the participants*

Characteristic

Development data set Validation data set

Cognitively 
normal

(n = 121)

Alzheimer 
disease

(n = 145) p value†
MCI-S 

(n = 113)
MCI-PE 
(n = 40)

MCI-PL  
(n = 41) p value‡ Post hoc‡

Age, yr 73.4 ± 6.2 74.5 ± 8.1 0.23 70.2 ± 6.9 72.7 ± 7.4 71.7 ± 7.1 0.12 —

Women, % 46.3 42.1 0.49 49.6 47.5 41.5 0.67 —

Education, yr 16.7 ± 2.6 15.8 ± 2.6 0.005 16.5 ± 2.7 16.3 ± 2.7 16.2 ± 2.5 0.78 —

CDR-SB score 0.0 ± 0.0 4.4 ± 1.7 <0.001 1.2 ± 0.7 1.9 ± 1.0 2.6 ± 0.8 <0.001 MCI-S < MCI-PE  
< MCI-PL

MMSE score 29.1 ± 1.2 23.1 ± 0.1 <0.001 28.2 ± 1.7 27.4 ± 1.7 26.9 ± 2.0 <0.001 MCI-S > MCI-PE, 
MCI-PL

CDR-SB = Clinical Dementia Rating Scale sum of boxes score; MCI = mild cognitive impairment; MCI-PE = patients with early-stage MCI who progressed to dementia 12–36 months after 
baseline evaluation; MCI-PL = patients with late-stage MCI who progressed to dementia within 12 months of baseline evaluation; MCI-S = patients with MCI who did not progress to 
dementia within 36 months of baseline evaluation; MMSE = Mini-Mental State Examination; SD = standard deviation. 
*Unless otherwise specified, findings are presented as mean ± SD.
†Student t test or χ2 test.
‡1-way analysis of variance or χ2 test, with Bonferroni post hoc comparison.
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Table 2: Model parameters for HVI, HTI and CTI

Parameter HVI HTI

CTI

Precuneus PCC Hippocampus

Intercept 21.22 316.94 81.94 — —

Coefficients

Volume −0.0020 — — — —

Energy — 0 −2095.07 0 −474.31

Entropy — −6.95 0 0 −6.68

Dissimilarity — 2.79 0 0 0.78

Contrast — −0.040 0 0 0

Inverse difference — −13.16 0 0 −37.69

Correlation — 12.49 0 0 0

Homogeneity — 0 0 0 −21.90

Autocorrelation — 0.0041 0 −0.00001 0

Cluster shade — −0.0023 −0.00054 −0.00029 −0.0015

Cluster prominence — −0.00007 0 0 −0.00004

Maximum probability — 179.93 −333.24 −428.67 −37.02

Sum of squares — 0 0 0 0

Sum average — 0 −0.063 −0.061 0.052

Sum variance — 0.00006 0 0 0.00003

Sum entropy — 0 3.16 0 0

Difference variance — −0.037 0 0 0

Difference entropy — 4.99 0 8.22 1.97

IMC I — −56.30 −5.98 25.58 −58.94

IMC II — 79.94 21.52 0 58.88

IDN — −375.78 0 0 −111.82

IDMN — 0 0 0 0

Age −0.095 −0.12 −0.11

Sex −0.76 −0.52 −0.45

CTI = composite texture index; HTI =  hippocampal texture index; HVI = hippocampal volume index; IDMN = inverse difference 
moment normalized; IDN = inverse difference normalized; IMC = information measures of correlation; PCC = posterior cingulate 
cortex. 

Fig. 1: Receiver operating characteristic (ROC) analysis for predicting conversion from mild cognitive impairment (MCI) to Alzheimer disease. 
Circles indicate points corresponding to Youden’s index for each ROC curve. AUC = area under the curve; CTI = composite texture index; 
HTI = hippocampal texture index; HVI = hippocampal volume index; MCI-P = patients with MCI who progressed to Alzheimer disease within 
36 months of baseline evaluation; MCI-PE = patients with early-stage MCI who progressed to Alzheimer disease 12–36 months after baseline 
evaluation; MCI-PL = patients with late-stage MCI who progressed to Alzheimer disease within 12 months of baseline evaluation; MCI-S = 
patients with MCI who did not progress to Alzheimer disease within 36 months of baseline evaluation; SE = standard error. 

S
en

si
tiv

ity

100 – specificity

MCI-S vs. MCI-P MCI-S vs. MCI-PE MCI-S vs. MCI-PL

100 – specificity 100 – specificity

HVI (AUC = 0.753)
HTI (AUC = 0.785)
CTI (AUC = 0.805) 

HVI (AUC = 0.726)
HTI (AUC = 0.795)
CTI (AUC = 0.817)

100

80

60

40

20

0

100

80

60

40

20

0

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

100

80

60

40

20

0

HTI (AUC = 0.790)
HVI (AUC = 0.739)

CTI (AUC = 0.811)

S
en

si
tiv

ity

S
en

si
tiv

ity



Lee et al.

12	 J Psychiatry Neurosci 2020;45(1)

versus MCI-P (AUC = 0.790 and 0.802 for nonregularized 
HTI and CTI, respectively) and for MCI-S versus MCI-PE 
(AUC = 0.795 and 0.805 for nonregularized HTI and CTI, re-
spectively). For MCI-S versus MCI-PL, performance relative 
to HVI was similar (AUC = 0.786 and 0.799 for nonregular-
ized HTI and CTI, respectively).

Discussion

This study showed that texture in brain MRI can be used to 
predict progression to Alzheimer disease in patients with 
MCI. The accuracy of texture in predicting conversion from 
MCI to Alzheimer disease (AUC = 0.79 to 0.82) reported in 
the present study was highest among those reported previ-
ously using structural brain MRI from ADNI. This may have 
been partly because of differences in field strength and the 
data set used (1.5 T ADNI1 data set v. 3 T ADNI2 data set), 
but the type of texture analysis could also have contributed. 
This study used second-order statistics (GLCM features) in 
the texture analysis, whereas previous studies that reported 
AUCs of 0.67 to 0.74 in predicting conversion from MCI to 
Alzheimer disease used spectral-based textures.14,20 It is also 
of note that although there were differences in the number of 
features and the classification method used for texture and 
volume, our analyses with the nonregularized texture indices 
provided results similar to the regularized texture indices, 
showing that differences in method were not the driving 
force behind the observed differences in accuracy between 
texture and volume.

In particular, texture in brain MRI showed higher 
performance in predicting conversion to Alzheimer disease 
in earlier stages of MCI compared with volume. A couple of 
studies investigated whether the texture of the hippocampus 
or medial temporal lobes can predict conversion from MCI 
to Alzheimer disease.14,20 However, one of those studies did 
not examine whether texture measures predicted conversion 
to Alzheimer disease earlier than volume measures.14 The 
other study did not directly compare the predictive perform
ance of the texture measures for conversion to Alzheimer 
disease in early versus late MCI; instead, it reported that tex-
ture outperformed volume when observing conversion to 
Alzheimer disease for 24 months rather than for 12 months.20 

This left it unclear as to whether the higher performance for 
the 24-month observation was because of differences in sta-
tistical power or actual differences in sensitivity to early 
MCI. The findings of the present study suggest that, com-
pared with volume measures, texture measures may be 
more sensitive to early changes in the brain that have 
already occurred in patients with MCI, even up to 3 years 
before progression to Alzheimer disease. This result was in 
agreement with the findings of previous reports that micro-
structural changes precede macroscopic atrophy5,54 and that 
texture measures may reflect microstructural information 
unique from that provided by volumetric measures.20,55 
Simões and colleagues showed in a voxelwise comparison 
that the brain areas selected as differentiating between MCI 
and CN status were not the same in texture feature maps 
and grey matter density maps,55 and Sørensen and col-

leagues reported that both texture and volume played com-
plementary roles in diagnosing Alzheimer disease.20

Interpretations of what texture reflects should be made 
with caution in the absence of histological data, but there is 
converging evidence that T1 relaxation time in cortical grey 
matter is negatively associated with histological measures of 
neuronal density.6,7 Indeed, T1 relaxation time is related to 
many factors in tissue, such as macromolecular concentra-
tion, water binding and water content.56 Loss of neuronal 
cell bodies (leading to reduced neuronal density), as would 
happen in Alzheimer disease, can result in a net loss of 
macromolecules in affected regions of the cortex, increasing 
free water in the extracellular space. Increased water content 
in the brain tissue leads to longer T1 relaxation times, which 
result in decreased signal intensity on T1-weighted MRI. 
Other suggested mechanisms in the literature include struc-
ture and density of intracortical myelin, bioaccumulation of 
iron deposits and altered water content modulated by 
altered synaptic density.8 Overall, a combination of these 
factors can lead to a pattern of changes in signal intensity 
that are subtle and complex, but quantifiable through tex-
tural measures. The combination of factors that cause signal 
intensity changes, particularly in the early stages, may not 
be robust enough for identifying Alzheimer disease using 
first-order statistics, which depend on absolute intensity 
values. Meanwhile, second-order statistics, which analyze 
the changes in spatial relationships between voxels, would 
still be able to detect a difference despite a minuscule change 
in signal intensity of a voxel.

The current study also showed the additive benefits of in-
cluding textures from regions of earlier pathological change 
than the hippocampus. Similar to the hippocampus, the pre-
cuneus and PCC are regions of slightly accelerated atrophy 
rates near dementia onset. One longitudinal voxel-based 
morphometry study found that while MCI converters and 
nonconverters showed no difference in grey matter loss over 
18 months in the temporal neocortex, parahippocampal cor-
tex, and orbitofrontal and inferior parietal areas, converters 
showed accelerated atrophy compared with nonconverters in 
the hippocampal area, inferior and middle temporal gyrus, 
precuneus and PCC.57 However, the precuneus and PCC are 
also key sites of the heavy amyloid accumulation and 
reduced glucose metabolism that begin in very early phases 
before hippocampal atrophy.58 Thus, higher accumulations of 
microstructural abnormalities in these regions as a result of 
relatively earlier pathology might have contributed to the 
additional differentiability of composite texture compared 
with hippocampal texture or volume. Even when comparing 
the performance of composite texture with a composite index 
of volume from the same 3 regions, texture was significantly 
more sensitive than volume in detecting future progression 
in early-stage MCI (AUC = 0.817 v. 0.741, p = 0.027). One 
study did not find texture differences in the precuneus and 
PCC between Alzheimer disease and patients who were CN, 
but the voxelwise texture analysis in that study employed 
only 1 feature per texture map.59 Any single texture feature of 
brain MRI would not be sufficient to reflect the complex pat-
terns of neuropathology in the brain.
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Limitations

One limitation of the present study was that we had no histo-
logical data to validate what we saw through texture. Future 
studies should be conducted on the pathological correlates of 
texture to gain further insight into the microscopic alterations 
reflected in measurement of texture. Furthermore, longitud
inal studies tracking the temporal relationship between tex-
ture changes and volume changes should provide more 
insight into the dynamics between the 2 measures. A poten-
tially confounding factor in texture analysis is the accuracy of 
ROI segmentation and noise from adjacent voxels along the 
boundary between grey matter and white matter. To correct 
for this, Sørensen and colleagues removed the surface of the 
hippocampus and analyzed the interior, resulting in a hippo-
campus half the original size.20 In the current study, we re-
moved voxels that lay outside the ±3σ range, because voxels 
of another tissue class would likely be among the outliers. As 
well, MRI field strength can influence texture analysis to 
some degree. In our study, we used high-field 3 T images, 
which are more favourable because of higher signal-to-noise 
ratio, but many others used 1.5 T images. Another possible 
limitation is that although texture showed a consistent trend 
toward higher performance than volume overall, there was a 
risk of type I error without correcting the AUC comparisons. 
Future studies in larger samples will need to be conducted to 
further validate our findings.

Conclusion

Texture features of the hippocampus, precuneus and PCC in 
brain MRI predicted progression from MCI to Alzheimer dis-
ease at an earlier time point and with higher accuracy than 
hippocampal volume.
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